논문투고

    축산관련 논문을 투고한 자료를 모아 정보를 제공합니다. 관련자료가 없는 성과년도는 표기되지 않습니다.

    논문명(한글), 논문명(영문), 성과주관부서, 품목코드, 학술지명, 주저자, 연도, 성과적용일, 첨부파일, 내용으로 구성된 글 상세입니다.
    논문명(한글) Scoping Review of Machine Learning and DeepLearning Algorithm Applications in VeterinaryClinics: Situation Analysis and Suggestions forFurther Studies
    논문명(영문) Scoping Review of Machine Learning and DeepLearning Algorithm Applications in VeterinaryClinics: Situation Analysis and Suggestions forFurther Studies
    성과주관부서 국립축산과학원 가축질병방역과
    품목코드
    학술지명 journal of veterinary clinics 주저자 민경덕
    성과년도 성과적용일 2023년09월
    Machine learning and deep learning (ML/DL) algorithms have been successfully applied in medical practice. However, their application in veterinary medicine is relatively limited, possibly due to a lack in the quantity and quality of relevant research. Because the potential demands for ML/DL applications in veterinary clinics are significant, it is important to note the current gaps in the literature and explore the possible directions for advancement in this field. Thus, a scoping review was conducted as a situation analysis. We developed a search strategy following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. PubMed and Embase databases were used in the initial search. The identified items were screened based on predefined inclusion and exclusion criteria. Information regarding model development, quality of validation, and model performance was extracted from the included studies. The current review found 55 studies that passed the criteria. In terms of target animals, the number of studies on industrial animals was similar to that on companion animals. Quantitative scarcity of prediction studies (n = 11, including duplications) was revealed in both industrial and non-industrial animal studies compared to diagnostic studies (n = 45, including duplications). Qualitative limitations were also identified, especially regarding validation methodologies. Considering these gaps in the literature, future studies examining the prediction and validation processes, which employ a prospective and multi-center approach, are highly recommended. Veterinary practitioners should acknowledge the current limitations in this field and adopt a receptive
    열람하신 정보에 대해 만족하십니까?

    해당자료에 답변이 필요하신 경우 의견남기기를 하여주십시요.

    담당부서 : 기획조정과[063-238-7127] 갱신주기 : 변경시