논문투고

    축산관련 논문을 투고한 자료를 모아 정보를 제공합니다. 관련자료가 없는 성과년도는 표기되지 않습니다.

    논문명(한글), 논문명(영문), 성과주관부서, 품목코드, 학술지명, 주저자, 연도, 성과적용일, 첨부파일, 내용으로 구성된 글 상세입니다.
    논문명(한글) Valorization of cattle manure via a thermo-chemical process
    논문명(영문) Valorization of cattle manure via a thermo-chemical process
    성과주관부서 국립축산과학원 축산생명환경부 축산환경과
    품목코드
    학술지명 Chemical Engineering Journal 주저자 조성헌
    성과년도 성과적용일 2024년01월
    World population growth and improvements in income levels have led to an increase in the global consumption of animal-sourced proteins. However, the massive production of animal manure has resulted in significant environmental burdens, such as increasing greenhouse gas emissions, eutrophication, and water and soil contamination. As such, this study proposed a sustainable and rapid disposal platform for animal manure as a precautionary approach to attenuate the environmental burdens caused by manure. A pyrolysis process was used to convert cattle manure into value-added products with the aim of achieving both rapid volume reduction and sustainable conversion. CO2 was fed into the process to increase the green/sustainable benefits and the results were compared with pyrolysis with the addition of N2 (inert gas). Pyrolysis oil was the major product of cattle manure pyrolysis. However, because of its complicated composition, pyrolysis oil cannot be considered a beneficial product. Thus, pyrolysis oil was converted into value-added syngas (H2/CO). Under pyrolysis with an introduction of CO2, the homogeneous reaction converted the volatile compounds and CO2 into CO at ≥ 510 ˚C. However, the reaction rate leading the CO2 reactivity was insufficient. To improve CO2 reactivity, supported Ni catalyst was introduced for catalytic pyrolysis. The concentration of CO from CO2-induced pyrolysis jumped 3.5 times (42.0 wt%) when the supported Ni catalyst was loaded in comparison with catalyst free pyrolysis setup. The increase in CO generation led to a decrease in the pyrolysis oil content (benzene analogs and polycyclic aromatic hydrocarbons) because the carbon was mostly reallocated to CO. The results of this study offer a strategic means of valorizing manure into syngas by tailoring the carbon length of the pyrogenic products.
    열람하신 정보에 대해 만족하십니까?

    해당자료에 답변이 필요하신 경우 의견남기기를 하여주십시요.

    담당부서 : 기획조정과[063-238-7127] 갱신주기 : 변경시