논문투고
축산관련 논문을 투고한 자료를 모아 정보를 제공합니다. 관련자료가 없는 성과년도는 표기되지 않습니다.
논문명(한글), 논문명(영문), 성과주관부서, 품목코드, 학술지명, 주저자, 연도, 성과적용일, 첨부파일, 내용으로 구성된 글 상세입니다.
논문명(한글) |
DCNN for Pig Vocalization and Non-Vocalization Classification: Evaluate Model Robustness with New Data |
논문명(영문) |
DCNN for Pig Vocalization and Non-Vocalization Classification: Evaluate Model Robustness with New Data |
성과주관부서 |
국립축산과학원 축산생명환경부 축산환경과 |
품목코드 |
축산 / 중가축 / 돼지 |
학술지명 |
Animals |
주저자 |
판반뎃 |
성과년도 |
2024 |
성과적용일 |
2024년07월 |
<P>Since pig vocalization is an important indicator of monitoring pig conditions, pig vocalization detection and recognition using deep learning play a crucial role in the management and welfare of modern pig livestock farming. However, collecting pig sound data for deep learning model training takes time and effort. Acknowledging the challenges of collecting pig sound data for model training, this study introduces a deep convolutional neural network (DCNN) architecture for pig vocalization and non-vocalization classification with a real pig farm dataset. Various audio feature extraction methods were evaluated individually to compare the performance differences, including Mel-frequency cepstral coefficients (MFCC), Mel-spectrogram, Chroma, and Tonnetz. This study proposes a novel feature extraction method called Mixed-MMCT to improve the classification accuracy by integrating MFCC, Mel-spectrogram, Chroma, and Tonnetz features. These feature extraction methods were applied to extract relevant features from the pig sound dataset for input into a deep learning network. For the experiment, three datasets were collected from three actual pig farms: Nias, Gimje, and Jeongeup. Each dataset consists of 4000 WAV files (2000 pig vocalization and 2000 pig non-vocalization) with a duration of three seconds. Various audio data augmentation techniques are utilized in the training set to improve the model performance and generalization, including pitch-shifting, time-shifting, time-stretching, and background-noising. In this study, the performance of the predictive deep learning model was assessed using the k-fold cross-validation (k = 5) technique on each dataset. By conducting rigorous experiments, Mixed-MMCT showed superior accuracy on Nias, Gimje, and Jeongeup, with rates of 99.50%, 99.56%, and 99.67%, respectively. Robustness experiments were performed to prove the effectiveness of the model by using two farm datasets as a training set and a farm as a testing set. The average performance of the Mixed-MMCT in terms of accuracy, precision, recall, and F1-score reached rates of 95.67%, 96.25%, 95.68%, and 95.96%, respectively. All results demonstrate that the proposed Mixed-MMCT feature extraction method outperforms other methods regarding pig vocalization and non-vocalization classification in real pig livestock farming.</P>